• 导航
    {{ item.name }}
    {{item.name}}
    • 学习路径
    • 正在研究
    • 系统开发
    • 正在学习
    • 关于我
  • 学习路径
  • 正在研究
  • 系统开发
  • 正在学习
  • 关于我
  • 登录
Literature 同步
  • 16s
  • A_needRead
  • alignment
  • b_bulkRNA-seq
    • alternative splicing
    • assembly
    • bulkRNA-seq article
    • review
  • b_scRNA-seq
    • cell type annotation
    • cell-cell communication
    • immune cell
    • integration
    • regulatory information
    • scRNASeq-method
    • seurat
    • trajectory inference
  • book
  • Epigenetic
    • WGBS
  • lncRNA
  • machine learning
    • biology
    • Dimensionality reduction for biology
  • metagenomic
    • assembly
    • binning
    • db
    • Kraken
    • MetaPhlAn
    • Pathogen
    • zh
  • miRNA
  • mNGS
  • other
    • a_mendely
      • databases
      • immune
      • Macrophages
      • mutation
      • ncRNA
      • reading
      • report
      • temp
    • amplicon
    • course
    • metabolomics
    • method
    • microorganism
    • Prognostic Model
    • project
    • Quantification
      • 16S
      • RNA-seq
    • technique
      • batch
      • Cell Type Enrichment
      • cluster
      • correlation
      • DEG
      • enrichment
      • regression
    • Transcriptomics Metabolomics
  • tools
  • wes
  • deep learning
  • bigdata
  • Untitled
  • diet
  • Network Medicine in Pathobiology


  • Dimensionality reduction via graph structure learning


  • DeepWalk: Online learning of social representations


  • Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning


  • Applications of deep learning in understanding gene regulation


  • A guide to machine learning for biologists


  • Visualizing data using t-SNE


  • UMAP: Uniform manifold approximation and projection


  • Parametric UMAP: learning embeddings with deep neural networks for representation and semi-supervised learning


  • On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation


  • Machine learning meets omics: applications and perspectives


  • Machine learning in bioinformatics


  • Current methods of gene prediction, their strengths and weaknesses


  • A primer on deep learning in genomics


社交账号: 哔哩哔哩 知乎 微信公众号 小红书 淘宝店铺
站内资源: 文献管理   淘宝商品  
联系方式: 邮箱:1749748955@qq.com   电话:13892078448 微信号:bioinfo_online
本系统源代码: gitee
© 2020-2022 WANG YANG 陕ICP备20004121号-1
bioinfo